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One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems 
while coping with less memory per compute node. In this work, we investigate a novel data decomposition method that 
would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In 
this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and 
remotely accumulates local tallies when crossing the boundary of the local spatial domain. Initial results demonstrate 
that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may 
be difficult due to inefficiencies in the current implementation of RMA operations. 
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I. Introduction 
In recent years, there has been an increasing interest in 

using Monte Carlo methods to solve the neutron transport 
equation not only for validation purposes but also as a 
routine design tool. This shift has necessitated higher levels 
of complexity and detail in the geometric models being used 
and, consequently, higher demand on computing resources. 
At the same time, the advancement of high-performance 
technical computing has allowed researchers to begin 
studying large-scale problems that would have previously 
been difficult, if not impossible, to solve using Monte Carlo 
methods. 

Notwithstanding the benefits of the Monte Carlo method, 
the fact remains that simulations using Monte Carlo codes 
may take considerably longer to run than their deterministic 
counterparts, especially when determining local quantities 
such as reaction rates. As a result, Monte Carlo codes are 
routinely run in parallel on a workstation, cluster, or 
supercomputer. Monte Carlo simulations are inherently 
parallel since each stochastic realization of a neutron being 
tracked through phase space is completely independent of all 
other realizations. This is especially true for fixed source 
problems where no synchronization is necessary. For 
criticality problems, care must be taken to ensure that the 
source distribution and eigenvalue converge before tallying 
quantities of interest and to ensure reproducibility. 

However, the ability to run a Monte Carlo code in parallel 
depends not only on the nature of the simulation but also on 
the computer architecture it is being run on. In order for 
most Monte Carlo codes to run in parallel, each process must 
have access to all the geometry and cross-section data. This 
means that the problem data are replicated and made 
available to each processor, thus imposing a constraint on 

the amount of system memory required. For example, if the 
geometry and cross-section data consume 4 GB of memory 
and the user desires to run on 8 processors, the total memory 
requirement will be at least 32 GB. For high-fidelity 
problems such as a reactor full-core model with hundreds or 
thousands of depletion zones, it may not be possible to use 
all the processors on a single node1 if doing so would 
exceed the amount of memory available on that node. 

 
II. Methodology 
II.1. History and Motivation 

Over the course of the last 40 years, microprocessor 
architecture and manufacturing processes have improved 
dramatically as evidenced by the persistent trend of 
increasing transistor density, larger die sizes, and increasing 
processor clock frequency. The clock frequency is often used 
as a measure of the performance of a processor. Thus, the 
performance of processors has also improved over time due 
to higher clock frequencies which allow for more operations 
per second. 

However, in the last half decade, we have seen only 
modest increases in clock frequencies. Nowadays, major 
improvements in performance are achieved by other means 
such as pipelining, instruction-level parallelism, multiple 
functional units, and most importantly multi-core and 
many-core processors. 

The advent of multi-core chips has forced a paradigm 
shift in the programming world, with increased emphasis on 
threaded calculations (e.g., using OpenMP or pthreads) on a 

                                                                                                        
1 By “node” here, we mean a typical symmetric multiprocessing 

(SMP) machine whereby multiple processors or cores are 
connected to a single shared memory. 



 

 

single SMP node, with message-passing (e.g., OpenMPI, 
MPICH2) between different nodes. Having a greater number 
of cores per processor will only benefit true performance if 
programmers take advantage of the parallelism inherent in 
the architecture. 

The above considerations lead one to conclude that in the 
near future, symmetric multiprocessing nodes will likely 
have hundreds of processor cores all sharing memory. The 
memory available on each node to be shared among cores 
will likely show only modest growth, leading to possibly less 
memory per core. In turn, the memory required by Monte 
Caro simulation will grow over time due to both the 
increasing fidelity of problems being simulated as well as a 
higher number of processors on a single shared memory 
node. As a result, there will be a need for new methods that 
cope with limited memory in Monte Carlo (and other) 
simulations. 

 
II.2. Data Decomposition 

In order to run a problem which would exceed the 
memory of a single node, the typical approach is to 
decompose the spatial domain and follow particles in a 
single domain on one compute node, moving particles 
between domains as needed. While this may work well for 
problems where the particle distribution is nearly uniform, 
non-uniformity may lead to poor load balancing, possibly 
even zero speedup due to idle processors and increasing 
communication. The inherent parallelism in Monte Carlo is 
over particles, not over spatial domains. 

In this paper, we look at an alternative scheme for 
parallelization. In this scheme, the problem data are still 
spatially decomposed, but need not reside locally on the 
compute nodes. Rather than assigning particles to compute 
nodes based on their spatial coordinates, parallelism on 
particles is achieved by having each compute node retrieve 
geometry and cross-section data from other nodes only as 
needed. This approach is reminiscent of schemes used in the 
early days of computing, where much data was stored in 
extended memory devices (e.g., LCM, ECS, SSD) or disk 
storage and fetched into memory as needed. This approach 
ensures that each compute node follows the same number of 
particles and thus performs approximately the same amount 
of work. 

The mapping of the particle and data processes onto the 
computing nodes is very flexible in the proposed data 
decomposition method. Since one-sided communication 
allows any one node to fetch data from another node as 
needed, the geometry and cross-section data can be stored 
anywhere in memory. The particle and data processes could 
thus be mapped to the same or different computing nodes. If 
needed, data nodes could be replicated to prevent contention 
between two nodes trying to access the same data. 

 
II.3. Network Communication 

The inherent limitation of the proposed method is greater 
communication as opposed to greater memory. Although 
message-passing would normally make such a scheme 
highly inefficient, the introduction of remote data access 

features in MPI-2 (one-sided remote puts and gets) could 
make it an effective approach for solving problems too large 
to fit in the memory of a single node. It is instructive at this 
point to review the basics of one- and two-sided 
communication. 

 
II.3.a. Remote Memory Access 

The Message Passing Interface (MPI) has become the 
de-facto standard API for programming parallel computers. 
The MPI-1 standard1) was entirely based on what's known as 
“two-sided communication”. In this model, two processes 
can send data to one another, but in doing so, both processes 
must explicitly know that the communication is taking place. 
Thus, one process issues a command to send data from a 
buffer in its memory while the other process issues a 
command to receive data into a buffer in its memory. 

The MPI-2 standard2) introduced a set of features called 
one-sided communication. This mode of communication 
allows a process to remotely access the memory of another 
process without explicitly issuing a call to an MPI routine, 
hence the alternate name remote memory access (RMA). In 
order to do so, the originating process must specify all the 
communication parameters. The target process may not even 
know what buffer in memory was accessed or which remote 
process accessed its memory.  

There are three basic RMA communication calls: remote 
reads (MPI_GET), remote writes (MPI_PUT), and remote 
updates (MPI_ACCUMULATE). The operation performed 
during the remote update could be adding a value to a remote 
buffer, multiplying it by a value, or one of a number of other 
options. 

 
II.3.b. Algorithm 

In the data decomposition algorithm, we subdivide the 
domain of the problem over a number of nodes as illustrated 
in Figure 1. Each colored region corresponds to a 
subdomain that is stored on one node. When a particle hits 
the boundary of the subdomain, rather than moving the 
particle to another processor as in the domain decomposition 
method, the node remotely retrieves the geometry for the 
region which it is about to enter and accumulates any tallies 
for the previous region it was in. One also needs to 
accumulate tallies whenever a particle leaks out of the 
geometry or is absorbed by a material.  

 
 

 
Figure 1: Decomposition of geometry into several subdomains 



 

 

 
While the basis of the method is simple enough, the devil 

is in the details. There are many variables at hand that make 
actually implementing this method in an efficient way a 
difficult problem. For instance, one should consider how 
large the subdomains should be, how each node will know 
where to retrieve data from and accumulate tallies to, when 
should problem data be replicated, etc. Rather than deal with 
all the complexities at hand immediately, in this paper we 
implement the method in a simple Monte Carlo code to gain 
some basic insights into the potential performance of this 
algorithm. 

 
II.4. Performance of MPI Implementations 

Before we begin looking at the performance of the data 
decomposition method itself, it is instructive to first look at 
the performance of the underlying remote memory access 
routines in various MPI implementations since the method 
relies heavily on RMA functionality. While there are many 
MPI implementations in existence, the two major 
implementations with large developer communities and 
active development are OpenMPI and MPICH2. Both of 
these implementations fully conform to the MPI-2 standard. 

To test the performance of one-sided communications, we 
looked at the average time it took to complete a remote read 
and a remote update for OpenMPI 1.4 and MPICH2-1.2.1. 
Figure 2 shows how the average time varies with the 
number of nodes simultaneously making calls to MPI_GET. 
We note that each process calling MPI_GET was remotely 
getting data from a distinct node so that there should be no 
data contention. 
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Figure 2: Average time to perform MPI_GET for MPI 

implementations 
 
Figure 3 shows that remote updates perform similar to 

remote reads. It is clear from these figures that using 
OpenMPI in its current release will result in non-scalable 
code since the average time to perform an RMA operation 
increases with the number of nodes. Thus, we have elected 
to use MPICH2 for any testing and performance studies. 
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Figure 3: Average time to perform MPI_ACCUMULATE for 

MPI implementations 
 

III. Performance Studies 
III.1. Description of Simple Code 

As a first step, a simple Monte Carlo criticality code was 
written in Fortran 90 and parallelized using point-to-point 
and collective communications. The MPICH2 
implementation was used to provide capabilities for 
message-passing and remote memory access. To make 
matters simple, only one energy group is used and scattering 
is assumed to be isotropic in the lab coordinate system. No 
variance reduction techniques are employed, so a particle's 
weight does not change throughout its history. 

The geometry is divided into a three-dimensional 
structured rectangular mesh, and each mesh cell is assigned a 
material number. The outer edges of the geometry can be 
assigned either vacuum or reflective boundary conditions. 
The method of successive generations is employed to 
converge on a stable fission source distribution and 
eigenvalue. 

 
III.1.a. Retrieval of Problem Data 

In our implementation, regions are specified with a 
derived data type named region. This data type has three 
attributes: the (x,y,z) coordinates of the lower-left corner of 
the region, the (x,y,z) coordinates of the upper-right corner of 
the region, and the material number assigned to the region. 
Thus, the entire geometry consists of one dynamically 
allocated array of type region. 

The algorithm for dynamic retrieval of geometry data by 
the slave processes works as follows. At the beginning of a 
particle's life as well as each time a boundary is crossed, a 
call is made to a routine updateRegion provided the particle 
hasn't leaked out of the geometry or hit a reflective boundary 
condition. The updateRegion routine checks whether the 
particle has hit the edge of its local spatial domain, and if so, 
it makes a call to MPI_GET to fetch a new block of region 
data that includes the region it is about to enter. To facilitate 
this process, each particle is assigned two triplets (i,j,k), one 
indicating what global region the particle is currently in and 
one indicating what local region the particle is currently in. 

The accumulation of local tallies onto the data nodes is 
similar in principle to the retrieval of data. The size of the 
tally arrays on the compute and data nodes is the same as the 



 

 

size of the geometry arrays. 
 

III.2. Worst-Case Scenario 

Let us now look at the performance of the simple scheme 
outlined above to see what improvements and refinements, if 
any, are necessary to make. We begin by looking at the 
worst-case scenario whereby there is no data decomposition 
and no data replication across nodes, i.e. all the problem data 
and tally structures sit on the master process. 

 
The worst-case scenario is represented by the diagram in 

Figure 4. Here we see that the master process and the sole 
data node are one and the same. This will result in 
non-scalability for a number of reasons. Firstly, as the 
number of compute nodes increases, there will be increasing 
contention for retrieving data and accumulating tallies on the 
master process. Another possible source of contention will 
be simultaneous requests for work by one compute node and 
for data by another compute node. This source of contention 
would, in theory, be obviated if the network interconnect 
supports remote direct memory access (RDMA) wherein the 
RMA operations do not interfere at all with computation. 

 

 
Figure 4: Physical depiction of worst-case scenario 

 
By having all the problem data on one node, we are 
guaranteed to have the maximum amount of contention for 
data since every compute node will query the master process 
for data whenever it needs to get a new geometry region or 
accumulate tallies.  

There are two manners in which we can test the 
performance of this scheme. The first, and more common, 
method is to run the problem with varying number of 
processors for a fixed amount of work, e.g. 100,000 histories 
per cycle. This is known as strong scaling. The other method 
is to increase the amount of work proportionally to the 
number of processors so that each processor has the same 
amount of work to perform regardless of how many 
processors are being run on. This ensures that the ratio 
between time spent in computation and time spent in 
communication should stay equal, and thus, the problem 
should scale. This is known as weak scaling. 

Based on the above considerations, it should be no 
surprise that this scheme shows very poor performance with 
an increasing number of processors. Figure 5 shows the 
speedup versus the number of compute nodes. Optimal 
performance is reached with only three compute nodes. Past 

this point, adding further compute nodes only slows down 
the overall run due to data contention at the master process. 
Each run consisted of 20 cycles with 10,000 histories per 
compute node per cycle (weak scaling). These runs were 
performed on the Kilkenny cluster at MIT, a commodity 
Linux cluster with a Gigabit Ethernet network interconnect. 
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Figure 5: Speed-up for worst-case scenario 

 

III.3. Best-Case Scenario 

The next scenario we look at is one in which each 
compute node has a dedicated data node that has all the 
problem data fully replicated. In this scenario, there should 
be no data contention since no two compute nodes will be 
making requests for data on the same data node. The 
diagram of this scenario shown in Figure 6 illustrates that 
each compute node has its associated data node on the same 
physical node. This will minimize the communication 
latency since accessing memory on the same physical node 
should be faster than accessing memory on a different node. 

For the worst-case scenario, it was sufficient to see that 
even with weak scaling, the scheme was non-scalable. 
However, for the best-case scenario, it is instructive to look 
at both weak and strong scaling. Runs with up to 40 compute 
nodes and 40 data nodes were performed, again using the 
Kilkenny cluster. For the weak scaling cases, 10,000 
histories per compute node were used. For the strong scaling 
cases, 400,000 total histories were used. 

 

 
Figure 6: Physical depiction of best-case scenario 

 
With no contention for data on each of the data nodes, the 
speed-up becomes nearly linear. Figure 7 shows the speedup 



 

 

versus the number of compute nodes. 
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Figure 7: Speed-up for best-case scenario 

 
We can see in Figure 7 that weak scaling performs 

slightly better than strong scaling as one might expect from 
intuition. The results here are encouraging given that the 
runs were performed on commodity hardware. On a 
supercomputer with a fast network interconnect (e.g., 
InfiniBand), the results should be even better than shown 
here. 

 
III.4. Effect of Locality of Data on Communication 
Costs 

In our best-case scenario above, we conjectured that by 
having the data stored on the same physical node as the 
compute node, the communication latency would be 
minimized. To actually quantify the effect of the locality of 
the data on the communication latency, two cases were run 
to see how performance fared when having all the data local 
to the compute nodes as well as the opposite. These cases are 
similar to our best-case scenario above in that each compute 
node has a dedicated data node. 

In the first case, illustrated in Figure 8, each compute 
node has its corresponding data node on a different physical 
node. The second case, illustrated in Figure 9, is the same as 
our best-case scenario above where each compute node has 
its corresponding data node on the same physical node. The 
first case will presumably be slower due to a higher 
communication latency associated with performing RMA 
operations on separate physical nodes. Each of these cases 
was run on 16 processes, eight compute nodes and eight data 
nodes (including the master process), for 20 cycles with 
100,000 histories per cycle. 

 

 
Figure 8: Physical depiction of non-local data nodes 

 

 
Figure 9: Physical depiction of local data nodes 

 
The first case with non-local data ran in 87.04 seconds 
whereas the second case with local data ran in 19.98 seconds. 
Thus, we see that performing RMA operations on non-local 
data incurs a factor of about four penalty in execution time 
versus performing RMA operations on local data due to the 
higher communication latency. This will have important 
implications when considering how best to decompose data 
over several nodes since it is desirable to have RMA 
operations performed on local nodes. 

 
III.5. Effect of Local Mesh Size on Communication 
Costs 

The size of the mesh data being remotely retrieved or 
accumulated may have a drastic effect on the communication 
cost. On one hand, having a larger local spatial domain will 
result in fewer RMA operations since a particle will cross 
the boundary of the local spatial domain with less frequency. 
On the other hand, a larger local spatial domain implies that 
the cost of performing a single RMA operation will be 
higher since there is more data to transfer. 

As a first step, we seek to quantify these two opposing 
effects by looking at how much data is transferred each cycle 
as the size of the local mesh. For this purpose, we looked at 
a 2D problem with 18x18 mesh cells. The local mesh size 
was varied from 1x1 up to 18x18 (all square meshes). This 
problem was run with 10,000 histories per cycle for 100 
cycles. The number of MPI_GET calls was tallied each cycle 
and then averaged over the cycles. In the 18x18 case, the 
entire geometry is available after a single MPI_GET, so the 
number of MPI_GET calls will simply be equal to the 



 

 

number of histories per cycle. Figure 10 shows the number 
of MPI_GET calls per cycle as a function of the local mesh 
size. 
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We see from Figure 10 that using a local mesh size larger 
than about 4x4 for this particular problem yields a negligible 
decrease in the number of remote memory accesses. As the 
mesh size increases, the amount of data being transferred 
with each MPI_GET goes up quadratically (since it is a 2D 
problem). This will result in monotonically increasing data 
transfer with respect to the local mesh size2. Thus, for this 
problem, a small local mesh size (2x2 or 3x3) will result in 
optimal run times. We note that these results will be strongly 
dependent on the physical nature of the problem, i.e. whether 
it is strongly scattering or strongly absorbing. 

This simple characterization of the effect of the local 
mesh size on the communication cost is not sufficient to 
draw any major conclusions. We recommend that further 
studies be performed, particularly looking at how the 
physical nature of the problem affects data transfer 
requirements. In addition to this, another important line of 
inquiry will be to look at the time required for a single RMA 
operation as a function of the amount of data being 
transferred. 

 
IV. Conclusions 

Although this approach may end up being a suboptimal 
solution at the present time, given the aforementioned trends 
it will become increasingly viable in the near future. 
Proposed architectures for exaflop systems postulate 
millions or 100s of millions of processor cores, with reduced 
memory per core. Effective use of such systems for 
large-scale Monte Carlo calculations will require extremely 
large numbers of independent computational threads as well 
as the use of remote data access. Advances in network 
interconnects have significantly improved the ability to 
transfer large amounts of data with low latency and high 
bandwidth (e.g. InfiniBand, 10 Gigabit Ethernet), and these 
advances are likely to continue.  

                                                                                                        
2 Note that although going from a 1x1 local mesh to a 2x2 local 

mesh yields a 22% decrease in the number of RMA operations, at 
the same time the amount of data being transferred with each RMA 
operation increases four-fold 

Our work to date has focused on basic demonstration and 
characterization of algorithms based on a “particle 
parallelism plus data decomposition” approach. We have 
investigated best- and worst-case bounds on performance, 
and are encouraged. Much future work is needed to 
investigate such aspects as: the optimal mapping of compute 
nodes and data nodes to a given computer system 
architecture; the ability to dynamically monitor remote 
memory accesses and adjust the compute/data node 
mappings; prefetching of remote data to minimize compute 
delays; performance scaling for 1000s and 100s of thousands 
of processor cores. In addition, some further changes in 
Monte Carlo algorithms may also be required, such as: the 
use of batch statistics, rather than history-based statistics; 
new iterative methods for keff eigenvalue calculations, such 
as concurrent calculation of multiple problems, each with 
particle parallelism and data decomposition; improved 
random number generators with longer periods and efficient 
skip-ahead schemes; increased use of on-the-fly computing 
methods rather than using precomputed data tables (e.g., for 
Doppler broadening of cross-section data). 
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